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Examples: a simple structure
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~ Three-mass system:
~_not realistic, but useful in explanations




Examples: a beam
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The finite element model of a clamped beam:

| - * more realistic and easy to visualize the
~properties
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xamples: the DSN antenna




he DSN antenna (cont)

A combination of structure, mechanical (gearboxes), electrical
(motors and tachometers). and electronics (circuits, filters and
amplifiers) hardware
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Examples: the finite element model of
the International Space Station structure
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Structure: definition

A structure Is a linear system which is:

finite-dimensional;
controllable, and observable;

its poles are complex with small real parts;

its poles are non-clustered.
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Structure: properties
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Structure: poles

Complex,

small real parts
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Structure: properties

Response to the white
noise input:

(a) total response is
composed of three
harmonics:,

(b) mode 1,
(c) mode 2,
(d) mode 3
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Models: three ways to obtain them

Physical laws A P dfor) or ov_,
[E— my AAS m, WA my _> dt a a 6 knc

(Lagrange, > - " T dx ) Oqp Oqy

Newton,

d’Alambert)

Finite element >
models —

System v
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Models of a linear system

State-space representation (A,B,C):

x =Ax+ Bu
y=Cx

Transfer function, G(s):
y(s)=G(s)u(s)

. G(s5)=C(sI-A)7'B

13



Second-order nodal model

Mg+ Dq + Kqg = B,u
y=CoqtCo4

q displacement vector

U input vector,

y output vector,

M mass matrix, positive definite,

D damping matrix, positive semidefinite,

K  stiffness matrix, positive semidefinite
B,  input matrix

Coq _ output displacement matrix

C,,  output velocity matrix

=

- 7/15/01
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Second-order modal model

Free vibrations: natural frequencies and modes:

o,
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e modez VA
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displacement; y-dir.

Natural modes

Beam:
/,
1 4 5 ) 7 8 9 10 11 12 13 14

node number
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DSN
antenna
natural
modes:

7/15/01
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Second-order modal model

Matrix of natural frequencies:

and modal matrix;
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Second-order modal model

Modal transformation:

q =g,

produces diagonal modal matrices:
M, ="M
K, =0'Kd
D, =®'Dd
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Second-order modal model

In modal coordinates

q, +27280q,, + qum =B, u
= Cmqqm + Cqum

or

y . "
Gmi +26,;0,9,,; + @7 q,,, =b,,u

Vi = Cmgi9mi T Coi9mi i=1,...,n,

n
| r i=1

Coa7set ‘ 20




State-space structural models

Nodal model:
X = =4 . r «— | state vector
) q

| /' MKk -M'D|
state space _ - )
representation - 0
l(A,B,C) \ B= g |
: 0
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state space ~ -
| representation 0
'(A,B,m T B= }

State-space models in modal coordinates

¥ = {xl } _ {qm} +———| state vector
X2 Im

. e
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State-space modal models

In this model the state matrix is in the following
form (x denotes a non-zero element)

A

L

(x x 0 0 - . 0 0]

x x 0 0 - .- 0 O

0 0 x x -0 .- 0 0

L e 0 0 x x - .- 0 | 0
0 0 -+ .- X X

0.0 0 0 - - X X
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State-space modal model

state equations |
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representation
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Transfer function in modal coordinates

The structural transfer function is a sum of modal t.f.

G(@)= G, (o)
i=1

+ chmw)

S

w} — o’ +2]§la)la)

7/15/01 ‘
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Decomposition of the t. f.

(in modal
coordinates)
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Decomposition in time domain
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Generalized model

W Z
u G y

The inputs to the generalized model consist of two vector signals:

*The actuator vector, denoted u, which consists of all inputs handled by the controller,
or applied as test inputs.

*The disturbance vector, w, noises and disturbances, which are not manipulated by the
controller, or are not a part of the test input.

The outputs of the generalized model consist of two vector signals:

*The sensor vector, y, used for the controller for the feedback purposes, or the
_measured test signals;

*The performance vector z, the outputs to be controlled, or to evaluate test
. performance

711501
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Generalized model

 2=Gu+Gw

e

State-space representation: Tty
x:Ax+Buu+wa WE > G
y=C,x ] o
z=C,z [ "

, - ) .
Transfer function: G, =C,(sI-A4)"B,

wl G,u+G,,w

-1
G,,=C,(sI-4)"'B,
G,=C,(sI-4)"'B,

G, =C,(sI-A4)"'B,
30



Part 2
Structural norms

*System norms indicate the intensity of its response
to standard excitation.

*H,, H_, and Hankel norms are discussed

*-The norms are used in the model reduction and in
the actuator/sensor placement procedures.



H, norm

Definition: for SISO systems

« integral of the square of magnitude of t.f. (rms
response to white noise)

|G| = 517-[- [ r(G" (@)G(@))dev

*rms impulse response

6} =le@l; = [ t(e” ®g(e)ar



Calculation

c?

H, norm

el =T cw,)

|61, = x(B5"w,)

are the controllability and observability grammians
obtained from the following Lyapunov equations

AW, +W. A" + BBT =0
AW +W A+C'C=0



H, norm
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H_ norm

Definition:
|G, = max o1ax (G())

Application:
¥, <lGlL e

Determination (as max p):

ATS + 84+ p 'SBBTS + picTC =0



Hankel norm

Definition:

|G, =sup

“y (¢ )”2

where
””(t )“2

|

u(t)=0 for >0
y()=0 for <0

Determination:

1G], =/ Amax P,

Relationship:

|61, <16l

|G, = sup
u(1)#0

”y (¢ )”2

“u(t )“2




Norms of a single mode

Determination of norms of a single mode:

T T T

I I
mode 1 mode 2 ”(;42 ” I l ‘

ol 2

— —

magnitude

frequency, rad/s




Norms of a single mode

1B:],, IS B\, |C; Bl.|c
), =PRIk |y JBLICL] [ Ik

2\ G; 200, T 4w,

Relationship between H,, H_, and Hankel norms




Norms of a single mode

Relationship between H,, H_, and Hankel norms
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Norms of a structure

2 (a) G (b)
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Norms of a mode with actuators

The H,, H_, and Hankel norms of the ith mode of a structure with a
set of s actuators is the rms sum of norms of the mode with each
single actuator from this set, i.e.,

11




Norms of a mode with sensors

The H,, H_, and Hankel norms of the ith mode of a structure with a
set of r sensors is the rms sum of norms of the mode with each
single sensor from this set, i.e.,

12



Norms of a mode with a/s

|G| |G|
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Decomposition of norms of a structure
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Using H, norm to structural damage detection

The jth sensor norm of a healthy structure

and the jth sensor norm of a damaged structure

2

The jth sensor index of the structural damage is a weighted difference
between the jth sensor norm of a healthy and damaged structure, i.e.,

2
2

G

2
shj |

2—‘G

sdj

Oy = ‘

Gshj

‘2
2

The index reflects impact of the structural damage on the ith mode.

15




Damage detection (cont.)

u
%
’/ 9 L 10 11 12
(\ él A\ "
18
13 14 17
16
/ 15
T © 2 I I A I 8

The cross section area of the steel beams is of 1 cm2.
Two damage cases are considered:
1.  a 20% reduction of the stiffness of the beam No 5
2. a 20% reduction of the stiffness of the beam No17.
The structure was more densely divided near the damage locations to
better reflect the stress concentration.
Nineteen strain-gage sensors are placed at the beams 1 to 19.
A vertical force applied at node P excites the structure.

16



Damage detection (first case)

@)
Sensor g ]
indices 5
2
°
0 2 4 6 8 10 12 14 16 18 20
sensor number
2 R R A R A SR
» 1.5
(]
Modal | 2
indices 3
g 0.5
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
mode number

The sensor indices in (a) indicate that the sensor No 5, suffered the most
changes. |
The modal indices in (b ) show that the first mode was heavily affected by

the damage.
17



Damage detection (second case)

0.6

Sensor 4t

indices

sensor index

0.2

sensor number

0.5

0.4 L

modal index

Modal > 5 0sl ]
indices 3 0a |
0.1 I _

oL _—_ __.__-__-_.L

9 10 11 12 13 14 15 16
modenumber

Fig.(a) shows the largest sensor index at location No 17.

The modal indices in Fig.(b) show that the tenth and the second modes were

mostly affected by the damage. 8



Norms of a structure in a general configuration

The following norm relationships holds:

__________________

! I
] |
> G ()
] + |
: I
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! I
1 I
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| + |
| I
: !
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Norms of a structure in a general configuration

This property is important for the closed-loop design. For the plant one
obtains

z=0G, w+G,Lu y=G,w+G,u

The closed-loop transfer matrix from w to z, with the controller K such that

u = Ky, is as follows:

G

C

] = Gwz + GuzK(l B GLtyI()_1 Gwy

From the above equation it follows that the controller impacts the
closed-loop performance not only through the action from v to y, but
also through the cross-actions from u to z, and from w to y.

20




Norms of a structure in a general configuration

Therefore, if

G,y Gy are zero, the controller has no impact whatsoever on the

performance z. Thus the controller design task consists of
simultaneous gain improvement between v and y, w and y,
and v and z.

However, the above property shows that the improvement in Guy

automatically leads to the improvement of Gwy and G, .

Thus, the task of actuator and sensor location simplifies to the
manipulation of Guy alone

21




Part 3
Actuator and sensor placement

The placement problem:
@ given an initial (large) set of sensors and actuators,

@ determine the locations of a smaller subset of sensors or
actuators

*- such that the H, , H_, or Hankel norms of the subset is as close
as possible to the norm of the original set.



H, Placement Indices and Matrices

Placement index:

Placement matrix:

Ath actuator




Actuator/Sensor Indices

H, actuator/sensor index is the rms sum of the kth actuator/sensor indexes

over all modes
Z 2
Oak = zo-ik
i=1

For the H_ and Hankel norms it is the largest index over all modes

O = max(cy,)
1



A/S and modal indices

2 2 2 2 2
0= VO14%024%034+0 44054

U

Determination of the >/V/,,:z___v_\v\‘

H, actuator and

modal indices of a - _
pinned beam Gmgﬁﬁiﬁﬁﬁz*"?a*“i = /—\/
V- actuator location; : j
V¥ — actuators used /\V\/\
for the calculation of : .
the indices. [ (




Modal indices

The ith mode index is a rms sum of the indices over all actuators/sensors




Example

Placing two sensors on a beam for best sensing of up to 4 modes

actuator sensor 2

sensor 1

-—

A beam with one actuator and two sensors

Using the H_ norm find the best place for two displacement sensors in
vertical direction:

* to sense the first, second, third, and fourth mode, and

* to sense simultaneously the first two modes, the first three modes, and
the first four modes.



Example (cont.)

Each node of a beam has 3 degrees of freedom :
horizontal displacement x, vertical displacement y, and rotation in the
figure plane 6. Denote a unit vector

e. =[0,0,...,1,...,0]

that has all zeros except 1 at ith location, then the displacement output
matrix for sensors located at ith and jth node is

C . = €3i-1
9|
3j-1

T
The input matrix is BO = €17



Example (cont.)

The H_norm for the kth mode (k=1,2,3,4) and (i,j) sensor location

_IB?/'z”C"”Z HGk“ :“Binznckinz
’ e 28,0,

> 28;0;
From these norms the sensor placement indices for each mode are

ij

O ki = Wi "“‘_

using weight such that

Max (0 ;) =1
l,]



Example (cont.)

First
mode

Third
mode

second sensor location (j)

second sensor location (j)

second sensor location (§j)

2 4 6 8 10 12 14
first sensor location (i)

2 4 6 8 10 12 14
first sensor location (i)

second sensor location (j)
-]

2 4 6 8 10 12 14
first sensor location (i)

2 4 6 8 10 12 14
first sensor location (i)

Sensor placement indices as a function of sensor locations

Second
mode

Fourth
mode




Example (cont.)

Next, the indices for the first two modes are determined
0-00121']' - maX(O-oollj?O-OOZij)

the indices for the first three modes

Ooi23ij = MAX(T 5145 T o2 5 O'oo3ij)

the indices for the first four modes

0"0012340- — maX(O—OOlij9O-002y°7O-OO3l'j'9O-OO4i]')

10



Example (cont.)

o 14 s 14
512 (a) 5 12 (b)
§ 10 | § 10 First
. - —
First 5 5 8 <+ | two
mode £ g 6 modes
- o 4
[ =
S S 280
[ (]
@ 2 4 6 8 10 12 14 2 2 4 6 8 10 12 14
first sensor location (i) first sensor location (i)
o 14 s 14
g 12 (c) £ 12 (d)
First 5 10 g 10 First
—’,——4 -
three 5 8 5 8 four
modes 5 6 5 6 modes
o 4 - 4
5 g
o 2 o 2 v
2 4 6 8 10 12 14

2 4 6 8 10 12 14
first sensor location (i) first sensor location (i)

Sensor placement H_ indices as a function of sensor locations
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Example (cont.)

Two sensor placement using the H, norms. First, the H, norm for the
kth mode (k=1,2,3,4) and (i,j) sensor location is obtained

By, ICil, _|Bill, Ik,

— , Gl =
2 2,/G;0; “ anz 2,/¢;0;

Gy

12



Example (cont.)

The indices for the first two modes are determined

[ 2 2
0212 = \/ 0315 T 02,

for the first three modes

_ 2 2 2
0212317 = \/ 02,1jj + 0225 02,35

and for the first four modes

_ [ 2 2 2
07 1234i = \/ 0215 Y0225 T 0235 T 0345

13



Example (cont.)

) S 14
' b
g § 12 ©
ks 3 10
i 2 2 :
First s = 8 | First
mode Z 2 6 <“— | two
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= o
(@] =] 2
(9] (9]
O .. ) :‘
2 2 4 6 8 10 12 14 s 2 4 6 8 10 12 14
first sensor location (i) first sensor location (i)
~ ~ 14
= ]
g g2
. < < 10
(9] Q .
First 8 s First
three g S four
S = 6
modes o 2 modes
e - 4
5 5
o o 2
“ @
2 4 6 8 10 12 14 2 4 6 8 10 12 14
first sensor location (i) first sensor location (i)

Sensor placement H, indices as a function of sensor locations
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Placement for Large Structures

For a large structure suppose that a specific sensor location gives a high-
performance index. Inevitably, locations close to it will have a high-performance
index as well. But the locations in the neighborhood of the original sensor are not
necessary. Additional criterion will eliminate closely spaced sensors/actuators.
Define a vector of the ith sensor norms, which is composed of the squares of the
modal norms

8 =

G denotes the transfer function of the kth mode at the ith sensor

15



Placement for Large Structures

The correlation coefficient

= giT Ek
il lexl,
The membership index /(k),
0 ifry>l-¢ and o,<o0;, fork>i,

I(k) = {

1 elsewhere ,

£=0.01-0.20

If I(k)=1, the kth sensor is accepted, and if /(k)=0, the kth sensor is
rejected (in this case the two locations i and k are either highly
correlated, or the ith location has a higher performance ).

16




ISS example

The Z1 module of the International Space Station structure

|

Pt I |

/I\‘ﬁﬁi
L
11

4

IT
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ISS example (cont.)

The finite-element model of the structure consists of 11,804 degrees of
freedom with 56 modes below the frequency of 70 Hz. The task is to identify
all modes below 70 Hz in tests, with accelerometers used as sensors .

Actuator Placement. The selection of four actuator locations.

The initial selection procedure combines engineering judgment, practical
experience, and physical constraints including the following criteria:

o All target modes should be excited with relatively equal amplitudes.
o The structure is excited in three axes.

The structure drawings and the finite-element model were examined and
2256 actuator candidate locations were selected out of the 11,804
translational degrees of freedom. The selection was based on accessibility
of the locations, strength of the structural parts, modal masses, and local
flexibility.

18



ISS example (cont.)

The Hankel norms of each actuator were determined and used to
evaluate the actuator importance indices. For each of 56 modes the six
most important actuators were selected, obtaining 268 actuator
locations. Next, the correlation coefficients of the Hankel norm vectors
for each actuator location were obtained. Those highly correlated were
discarded. The number of actuators was reduced down to 52 locations.

The next step involved evaluation of the location of the actuators using
the finite-element model simulations, along with determination of
accessibility, structural strength, and the importance index. The final
four actuators were located at the nodal points shown in the above
figure as black spots. These four locations are essentially near the four
corners of the structure.

19



1SS example (cont.)

Sensor Placement. The sensor selection criteria includes:

e Establishing the maximum allowable number of sensors. In our case
it was 400.

e Determination of the sensor placement indices for each mode.
Sensors with the highest indices were selected.

e Using the correlation procedure to select uncorrelated sensors by
evaluating the membership index.

The excitation level of each mode by the four selected actuators is
represented by the Hankel norms, the next figure. It can be seen that
some modes are weakly excited, providing weaker measurement
signal, thus they are more difficult to identify. The next figure also
presents an overview of the sensor importance index for each sensor.

20



ISS example (cont.)
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(=] o o
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ISS example (cont.)

The set of illustrations presented in the next figure shows the
placement indices of each sensor for the first 10 modes.

22
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1SS example (cont.)

This figure shows the membership index / which has nonzero values for

341 locations.

o o
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- ISS example (cont.)

Triangles indicate the selected sensor locations.

Many of the sensors are located in and around the control moment gyros
and the cable tray, since 13 out of the 56 modes involve extensive control
moment gyro movement and 9 are mostly cable tray modes.

Many of the 56 modes are local modes that require concentrations of
sensors at the particular locations seen in the figure above.

In order to test the effectiveness of the procedure we compared the
Hankel norms of each mode, for the structure with a full set of 11,804
sensors, and with the selected 341 sensors. The norms with the selected
sensors should be proportional to the norms of the full set (they are
always smaller than the norms of the full set, but proportionality indicates
that each mode is excited and sensed comparatively at the same level).
The norms are shown in the next figure, showing that the profile of the
modal norms is approximately preserved.

26



ISS example (cont.)

The modal Hankel norms of the full set of sensors (O), and the selected
sensors () of the International Space Station truss.
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Placement for the General Plant
Configuration

Selection of actuators not collocated with disturbances, and sensors
not collocated with the performance outputs

The structural test plan is based on the available information on the
structure itself, on disturbances acting on the structure, and on the
expected structural performance. The first information is typically in a
form of a structural finite-element model. The disturbance information
includes disturbance location and spectral contents. The structure
performance is commonly evaluated through the displacements or
accelerations at selected locations.

28




Placement for the General Plant

W L Z
u G LY
— ™ —

The formulation of structural testing is based on a block diagram as
above. The structure input is composed of two inputs:

the disturbances (w), and the actuator inputs (u).
The plant output is divided into two sets:
the performance (z), and the sensor output (y).

The actuator inputs include forces and torque applied during a test.
The disturbance inputs include disturbances, noises, and commands.
The sensor signals consist of structure outputs recorded during the
test. The performance output includes signals that characterize the
system performance, and is not generally measured during the test.
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Placement for the General Plant

to obtain the performance of the test item close to the performance of a

structure in a real environment one uses the available (or candidate)
locations of actuators and sensors and formulates the selection criteria
to imitate the actual environment as close as possible.
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Placement for the General Plant

Modal Norms of a Generalized Structure

W Z
u G y
e -

For each mode the product of norms of the performance loop (from
disturbance to performance) and the control loop (from actuators to sensors)
is equal to the product of the norms of the cross-couplings: between the
disturbance and sensors, and between the actuators and performance.

Consequence: increasing the actuator—sensor connectivity, one increases the
cross-connectivity: actuator-to-performance, and disturbance-to-sensors.

Sensors not only respond to the actuator input, but also to disturbances, and
actuators not only impact the sensors, but also the performance.
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Placement for the General Plant

Additive Property of Actuators of a Generalized Structure.

u,yi

Gl =2 Zl

w.yi is the transfer function of the ith mode from the kth actuator to the
output y, and a,,; is the disturbance weight of the ith mode,

Similar property holds for sensors
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Placement for the General Plant

Placement Indices and Matrices

011 %n Ok O1s
021 O O2k O2s
s |
01 Oy . Oy .. O | < ithmode
_O-nl 0,0 - Oui oo O-nS_
kth actuator
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Example

- 3D truss

The disturbance w is applied at node 7 in the horizontal direction.
The performance z is measured as rates of all nodes.
The input u is applied at node 26 in the vertical direction,

The candidate sensor locations are at the nodes 5, 6, 7, 12, 13, 14, 19,
20, 21, 26, 27, and 28, in all three directions (total of 36 locations).
Using the first 50 modes, select a minimal number of sensors that

would measure, as close as possible, the disturbance-to-performance
dynamics.

34



Example (cont.)

 The H_norms of each mode of G,. G, G,, G
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wy uz
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Example (cont.)

The property ||G,,..||G

uyi

=[c

wyi

|G.;| is checked. It holds since the plots of

g1(k) =Gt |, Guk|, and £(k)=|G| [Gukl, overlap in figure below
108
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Example (cont.)

the sensor modal weights are determined for each mode

10

10 |

10 |

10

20 30 40 5

mode number

0
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Example (cont.)

The placement indices for each sensor are determined

0.4

0.3

0.1

021

5 10 15 20 25

sensor number

30

35
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Example (cont.)

« The sensors can be highly correlated The membership index /(k) is
determined

S o
AN o0 —_
I T
| |

membership index, [
o o
SRS
T
1 |

! | | {
10 15 20 25 30 35

sensor number

o

o
(9]

The index only nonzero values are for k = 29 and k = 30, that correspond to
node 14, in the y- and z-directions.
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Example (cont.)

o
©
)

sensors
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Part 4
Modal actuators and sensors

< |n some structural tests it is desirable to isolate (i.e.,
excite and measure) a single mode, or selected modes.

*\We show that a proper spatial distribution of an input force
are chosen to excite a single structural mode



Model used

The second order modal model

g, +27Q4, +Q%q, =B, u
Y= Cqum + ConGm

: 2
Gmi +26:0,9,,; + @7 q,,; = by,

Yi = Cmqi Ami + Covi9mi

n
Y= Zyi
i=I




Modal actuators

Excltes .
single
mode

q

n +22Q4,, +Q°q,, = B,u

 Each actuator
excite single
Hode

| Sihg/le‘fac(;tuator
_excite all modes




Modal actuators (cont.)

» Basic equation

}Bm = RB{

R=M;'®"




Modal actuators (cont.)

 Modal actuator solution:

*|®'B, =d" MDB,
®'B =M,_B,
-1 .7 -1
M;'®"B =M.;'M B,

RB,=B,



Modal actuators, example

/
%12

The vertical displacement sensors are located at nodes 2 to 15, and
the single output is the sum of the sensor readings.

Actuator locations shall be determined such that the second mode
with 0.01 modal gain is excited, and the remaining modes are not
excited.

The first nine modes are considered.
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Example (cont.)

~
J/

* The assigned modal matrix is: 0 , ;
1|+ second
mode
0
0
B,=40¢
0
0
0
0

r
.



Example (cont.)

From the modal actuator equation, for this modal input matrix, a nodal
input matrix is determined.

It contains gains for the vertical forces at the nodes 2 to 15. The gain
distribution of the actuators is shown in Fig.8.1a.

Note that this distribution is proportional to the second mode shape.



actuator gain

actuator width

ALV o v »
T 1T 1T 7

Example (cont.)
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Example (cont.)

For the input and the outputs defined as above the magnitude of the
transfer function is presented in figure below. The plot shows clearly
that only the second mode is excited.

-2

10 T ¥ TOTTT T T L L N R S e T T T T T L S S B N

10 |

magnitude
[
(=)
[

'
o0

o
o

RN ! gt 1 Loy
0 1 2 3 4

10 10 10 10 10

frequency, Hz

10



Example (cont.)

Impulse
response

displacement
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time, s

_displace-
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Modal actuators with assigned amplitude

To excite the ith mode with amplitude a;.

The H_norm can be used as a measure of the amplitude of the ith

mode. In case of a single-input-single-output system the H_ norm of the
ith mode is equal to the height of the ith resonance peak.

“bmi “2 ”cmi “2

o, =
171

Assume a unity input gain for the current mode, i.e. b, =1

so that the current amplitude is 4 . = “Cmi “2
2¢,0;

12




Modal actuators with assigned amplitude

 In order to obtain amplitude a; one has to multiply a_; by the weight w,
d; = Wil

Introducing a,; as in the previous slide to the above equation one obtains
_ 20,00,

|

W;

i

Define the weight matrix W=diag(w,), then the matrix that sets the
required output modal amplitudes is

B, . =WB

mw m

13



Example 2

The same beam is considered. All nine modes need to
be excited by a single actuator with the amplitude of
0.01. Therefore, the assigned modal input matrix is

the weighting matrix is obtained from equation as
above

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.01
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Example 2 (cont.)

« The resulting gains of the nodal input matrix shown in Fig.a do not
follow any particular mode shape. The width of the corresponding
piezoelectric actuator that excites all nine modes is shown in b.

actuator gain

actuator width

0.4

0.2
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Example 2 (cont.)

The plot of the transfer function shows that all the nine modes are excited,
with approximately the same amplitude of 0.01 cm.
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Example 2 (cont.)

Fig.a shows the impulse response at node 6, showing nine equally excited
modes. Fig.b shows displacements in y direction of all nodes. The
rather chaotic pattern of displacement indicates the presence of all 9
modes in the response.
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Modal sensors

« The modal sensor determination is similar to the determination of
modal actuators. The governing equations

Cpg = Cog®
Cmv = COVCD

If one wants to observe the first mode only one assumes the modal output
matrix in the form

Cmq:[% 0 - 0]
lfirstmode

18



Modal sensors

The corresponding displacement output matrix is

_ +
Cog = Cpg®@
For rate sensors:
COV = Cqu)+
Or alternatively, without pseudoinverse:
C,=C, M, '®" M
oq — “mqT"m
COV = CmVMn_’llq)TM

19



Example 3

« The beam with three vertical force actuators located at nodes 2, 7, and
12 is considered. Find the displacement output matrix such that the first
nine modes have equal contribution to the measured output with
amplitude 0.01.

« The matrix that excites first nine modes is the unit matrix of dimension
9 of amplitude a=0.01, i.e.

r”le”z 0 0
C,ry = 0 “Cm2”2 0
0 0 ”Cmn'lz_
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Example 3 (cont.)

the magnitudes of the transfer functions for 9 outputs in figure below
show that all nine outputs have resonance peak of 0.01.
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Example 4

The beam from with actuators as in Example 3 is considered. Find the
nodal rate sensor matrix such that all nine modes but mode 2
contribute equally to the measured output with the amplitude of 0.01.

The matrix that gives in the equal resonant amplitudes of 0.01 is

C,,=007[1 01 11111 1]

- i et i
:
o
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Example 4 (cont.)

For this matrix the magnitude of the transfer function is shown below,
dashed line. It is compared with the magnitude of the transfer function
for the output that contains all the 9 modes (solid line). It is easy to
notice that the second resonance peak is missing in the plot.
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